首页> 外文OA文献 >Discussion of 'Soil Water Retention Characteristics of Vertisols and Pedotransfer Functions Based on Nearest Neighbor andNeural Networks Approaches to Estimate AWC' by N. G. Patil, D. K. Pal, C. Mandal,and D. K. Mandal
【2h】

Discussion of 'Soil Water Retention Characteristics of Vertisols and Pedotransfer Functions Based on Nearest Neighbor andNeural Networks Approaches to Estimate AWC' by N. G. Patil, D. K. Pal, C. Mandal,and D. K. Mandal

机译:N. G. Patil,D。K. Pal,C。Mandal和D. K. Mandal讨论了“基于最近邻和神经网络方法估算AWC的垂直颗粒和Pedotransfer函数的土壤水分保留特征”

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Irrigation management in vertisols is one of the major challenges to increase agricultural productivity in India and many developing\udcountries. Unfortunately, information on hydraulic properties of these soils is very sparse. In an attempt to understand these soils for\udbetter management, 10 different functions were evaluated for their efficacy to describe soil-water retention characteristics (SWRC) of vertisols\udof India, and point pedotransfer functions (PTFs) were developed by using a nearest neighbor (k-NN) algorithm as an alternative to\udwidely used artificial neural networks (ANN) for prediction of available water capacity (AWC). Soil profile information of 26 representative\udsites comprising 157 soil samples was used for analysis. The Campbell model fit to measured SWRC data better than any other model, with\udrelatively lower root mean square error (RMSE) (0.0199), higher degree of agreement (0.9867), and lower absolute error on an average\ud(0.0134). Three other functions, namely, modified Cass-Hutson, Brooks-Corey, and Van Genuchten, also described the SWRC data with\udacceptable accuracy. Four levels of input information were used for point pedotransfer function (PTF) development: (1) textural data [data on\udsand, silt, and clay fraction (SSC)]; (2) Level 1 þ bulk density data (SSCBD); (3) Level 2 þ organic matter (SSCBDOM); and (4) Level 1 þ\udorganic matter (SSCOM). The RMSE in predictions by k-NN PTFs ranged from 0.0339 to 0:0450 m3 m3 with an average of\ud0:0403 m3 m3. The ANN PTFs performed with average RMSE 0:0426 m3 m3 and a range of 0.0395 to 0:0474 m3 m3. The k-NN algorithm\udprovided a viable alternative to neural regression with marginally better performance and the benefit of flexibility in the appending\udreference database. The results are significant because SWRC data are still in the development stage in India, and k-NN PTFs would have a\udgreater value because of the flexibility.
机译:在印度和许多发展中国家,杂粮灌溉管理是提高农业生产率的主要挑战之一。不幸的是,关于这些土壤的水力特性的信息非常稀少。为了理解这些土壤以进行更好的管理,对10种不同功能的功效进行了描述,以描述印度草的土壤持水特征(SWRC),并通过使用最近的邻居开发了点脚踏板传递功能(PTF)。 (k-NN)算法可替代\广泛使用的人工神经网络(ANN)来预测可用水量(AWC)。分析了包括157个土壤样品的26个代表性\无土的土壤剖面信息。坎贝尔模型比任何其他模型都更适合于测量的SWRC数据,\均方根误差(RMSE)(0.0199)相对较低,一致度(0.9867)较高,平均ud(0.0134)则绝对误差较低。修改后的Cass-Hutson,Brooks-Corey和Van Genuchten这三个其他函数也以令人难以置信的准确性描述了SWRC数据。点信息传递功能(PTF)的开发使用了四个级别的输入信息:(1)纹理数据[关于\ udsand,粉砂和粘土分数(SSC)的数据]; (2)1级þ堆密度数据(SSCBD); (3)2级þ有机物(SSCBDOM); (4)1级þ\ UDorganic物质(SSCOM)。通过k-NN个PTF进行的预测的RMSE范围为0.0339至0:0450 m3 m3,平均值为\ ud0:0403 m3 m3。 ANN PTF的平均RMSE为0:0426 m3 m3,范围为0.0395至0:0474 m3 m3。 k-NN算法\在神经网络回归中提供了一种可行的替代方法,性能稍好,并且在附加\参考数据库中具有灵活性。结果是有意义的,因为印度的SWRC数据仍处于开发阶段,并且k-NN PTF由于具有灵活性而具有更大的价值。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号